Search results

Search for "neural stem cells" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • in non-neurogenic regions. Disruption of the BBB by NIR light irradiation of AuNRs increased the AuNRs ability to accumulate in the SVZ, making this formulation interesting for targeting neural stem cells. Superparamagnetic iron oxide nanoparticles: Superparamagnetic iron oxide nanoparticles (SPIONs
PDF
Album
Review
Published 04 Jun 2020

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • . Their properties can be modified by coating with different biocompatible polymers. To test if a coating polymer, poly(L-lysine), can improve the biocompatibility of nanoparticles applied to neural stem cells, poly(L-lysine)-coated maghemite nanoparticles were prepared and characterized. We evaluated
  • their cellular uptake, the mechanism of internalization, cytotoxicity, viability and proliferation of neural stem cells, and compared them to the commercially available dextran-coated nanomag®-D-spio nanoparticles. Results: Light microscopy of Prussian blue staining revealed a concentration-dependent
  • intracellular uptake of iron oxide in neural stem cells. The methyl thiazolyl tetrazolium assay and the calcein acetoxymethyl ester/propidium iodide assay demonstrated that poly(L-lysine)-coated maghemite nanoparticles scored better than nanomag®-D-spio in cell labeling efficiency, viability and proliferation
PDF
Album
Full Research Paper
Published 27 Jun 2016

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • interpret these results in terms of a possible application for neural stimulation. Graphene-based substrates have also been investigated as scaffolds for growth and for the differentiation of stem cells [142][143]. The differentiation into neurons of human neural stem cells (hNSCs), cultured on graphene has
  • nanogrids, further enhanced by means of a repeated photo stimulation. Li and co-workers [146] designed a three-dimensional graphene foam scaffold for neural stem cells. This scaffold allowed the formation of a three-dimensional neural network, resulting in an excellent substrate for cell adhesion and
  • chamber (8), directly onto hydrogen-terminated diamond (5). Reproduced from [128] with permission. Copyright 2009 Elsevier. Three-dimensional graphene foam scaffolds allow neural stem cells to adhere and improve their proliferation by up-regulating Ki-67 protein expression. Reproduced from [146] with
PDF
Album
Correction
Review
Published 23 Oct 2014
Other Beilstein-Institut Open Science Activities